Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.290
1.
bioRxiv ; 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38746377

Background and Objective: Prostate cancer (PCa) is a leading cause of cancer mortality in men, with neuroendocrine prostate cancer (NEPC) representing a particularly resistant subtype. The role of transcription factors (TFs) in the progression from prostatic adenocarcinoma (PRAD) to NEPC is poorly understood. This study aims to identify and analyze lineage-specific TF profiles in PRAD and NEPC and illustrate their dynamic shifts during NE transdifferentiation. Methods: A novel algorithmic approach was developed to evaluate the weighted expression of TFs within patient samples, enabling a nuanced understanding of TF landscapes in PCa progression and TF dynamic shifts during NE transdifferentiation. Results: unveiled TF profiles for PRAD and NEPC, identifying 126 shared TFs, 46 adenocarcinoma-TFs, and 56 NEPC-TFs. Enrichment analysis across multiple clinical cohorts confirmed the lineage specificity and clinical relevance of these lineage-TFs signatures. Functional analysis revealed that lineage-TFs are implicated in pathways critical to cell development, differentiation, and lineage determination. Novel lineage-TF candidates were identified, offering potential targets for therapeutic intervention. Furthermore, our longitudinal study on NE transdifferentiation highlighted dynamic TF expression shifts and delineated a three-phase hypothesis for the process comprised of de-differentiation, dormancy, and re-differentiation. and proposing novel insights into the mechanisms of PCa progression. Conclusion: The lineage-specific TF profiles in PRAD and NEPC reveal a dynamic shift in the TF landscape during PCa progression, highlighting three distinct phases of NE transdifferentiation.

2.
Cell Rep ; 43(5): 114193, 2024 May 05.
Article En | MEDLINE | ID: mdl-38709635

Astrocytes play vital roles in blood-brain barrier (BBB) maintenance, yet how they support BBB integrity under normal or pathological conditions remains poorly defined. Recent evidence suggests that ion homeostasis is a cellular mechanism important for BBB integrity. In the current study, we investigated the function of an astrocyte-specific pH regulator, Slc4a4, in BBB maintenance and repair. We show that astrocytic Slc4a4 is required for normal astrocyte morphological complexity and BBB function. Multi-omics analyses identified increased astrocytic secretion of CCL2 coupled with dysregulated arginine-NO metabolism after Slc4a4 deletion. Using a model of ischemic stroke, we found that loss of Slc4a4 exacerbates BBB disruption, which was rescued by pharmacological or genetic inhibition of the CCL2-CCR2 pathway in vivo. Together, our study identifies the astrocytic Slc4a4-CCL2 and endothelial CCR2 axis as a mechanism controlling BBB integrity and repair, while providing insights for a therapeutic approach against BBB-related CNS disorders.

3.
Mar Pollut Bull ; 203: 116417, 2024 May 02.
Article En | MEDLINE | ID: mdl-38701604

Estuaries have been shown to be potential hotspots of microplastic accumulation, but the hydrodynamic conditions and particle properties that control this process need further investigation. We have designed a series of numerical particle-tracking experiments to examine the sensitivity of retention in estuaries to particle size, particle density and varying tides and freshwater flow. At the end of the simulation, over 90 % of sinking particles are retained in the estuary, and the retention rate is further increased by high river runoff. In contrast, increased river discharge increases the number of marginally-buoyant (i.e. density close to estuarine water) particles that escape the estuary. Larger particle size tends to limit the downstream transport of sinking particles but can facilitate the transport of marginally-buoyant particles. Tidal asymmetry, vertical turbulent mixing and the vertical structure of the subtidal circulation are proposed as the underlying mechanisms controlling the fate of particles.

4.
World J Gastroenterol ; 30(16): 2281-2284, 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38690016

The following are our views regarding the "letter to the editor" (Helicobacter is preserved in yeast vacuoles! Does Koch's postulates confirm it?) by Alipour and Gaeini, and the response "letter to the editor" (Candida accommodates non-culturable Helicobacter pylori in its vacuole-Koch's postulates aren't applicable) by Siavoshi and Saniee. Alipour and Gaeini rejected the methods, results, discussion, and conclusions summarized in a review article by Siavoshi and Saniee. The present article reviews and discusses evidence on the evolutionary adaptation of Helicobacter pylori (H. pylori) to thrive in Candida cell vacuoles and concludes that Candida could act as a Trojan horse, transporting potentially infectious H. pylori into the stomach of humans.


Helicobacter Infections , Helicobacter pylori , Helicobacter pylori/pathogenicity , Humans , Helicobacter Infections/microbiology , Candida/physiology , Candida/growth & development , Candida/pathogenicity , Vacuoles/microbiology , Vacuoles/metabolism , Stomach/microbiology , Gastric Mucosa/microbiology
5.
Acad Radiol ; 2024 May 12.
Article En | MEDLINE | ID: mdl-38740530

RATIONALE AND OBJECTIVES: To build a risk stratification by incorporating PET/CT-based deep learning features and whole-body metabolic tumor volume (MTVwb), which was to make predictions about overall survival (OS) and progression-free survival (PFS) for those with non-small cell lung cancer (NSCLC) as a complement to the TNM staging. MATERIALS AND METHODS: The study enrolled 590 patients with NSCLC (413 for training and 177 for testing). Features were extracted by employing a convolutional neural network. The combined risk stratification (CRS) was constructed by the selected features and MTVwb, which were contrasted and integrated with TNM staging. In the testing set, those were verified. RESULTS: Multivariate analysis revealed that CRS was an independent predictor of OS and PFS. C-indexes of the CRS demonstrated statistically significant increases in comparison to TNM staging, excepting predicting OS in the testing set (for OS, C-index=0.71 vs. 0.691 in the training set and 0.73 vs. 0.736 in the testing set; for PFS, C-index=0.702 vs. 0.686 in the training set and 0.732 vs. 0.71 in the testing set). The nomogram that combined CRS with TNM staging demonstrated the most superior model performance in the training and testing sets (C-index=0.741 and 0.771). CONCLUSION: The addition of CRS improves TNM staging's predictive power and shows potential as a useful tool to support physicians in making treatment decisions.

6.
J Am Heart Assoc ; 13(8): e034176, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38606775

BACKGROUND: Concomitant atrial fibrillation and end-stage renal disease is common and associated with an unfavorable prognosis. Although oral anticoagulants have been well established to prevent thromboembolism, the applicability in patients under long-term dialysis remains debatable. The study aimed to determine the efficacy and safety of anticoagulation in the dialysis-dependent population. METHODS AND RESULTS: An updated network meta-analysis based on MEDLINE, EMBASE, and the Cochrane Library was performed. Studies published up to December 2022 were included. Direct oral anticoagulants (DOACs, dabigatran, rivaroxaban, apixaban 2.5/5 mg twice daily), vitamin K antagonists (VKAs), and no anticoagulation were compared on safety and efficacy outcomes. The outcomes of interest were major bleeding, thromboembolism, and all-cause death. A total of 42 studies, including 3 randomized controlled trials, with 185 864 subjects were pooled. VKAs were associated with a significantly higher risk of major bleeding than either no anticoagulation (hazard ratio [HR], 1.47; 95% CI, 1.34-1.61) or DOACs (DOACs versus VKAs; HR, 0.74 [95% CI, 0.64-0.84]). For the prevention of thromboembolism, the efficacies of VKAs, DOACs, and no anticoagulation were equivalent. Nevertheless, dabigatran and rivaroxaban were associated with fewer embolic events. There were no differences in all-cause death with the administration of VKAs, DOACs, or no anticoagulation. CONCLUSIONS: For dialysis-dependent populations, dabigatran and rivaroxaban were associated with better efficacy, while dabigatran and apixaban demonstrated better safety. No anticoagulation was a noninferior alterative, and VKAs were associated with the worst outcomes.


Atrial Fibrillation , Kidney Failure, Chronic , Stroke , Thromboembolism , Humans , Atrial Fibrillation/complications , Atrial Fibrillation/drug therapy , Rivaroxaban/therapeutic use , Dabigatran/therapeutic use , Stroke/etiology , Network Meta-Analysis , Anticoagulants/adverse effects , Hemorrhage/chemically induced , Fibrinolytic Agents/therapeutic use , Administration, Oral , Kidney Failure, Chronic/therapy , Kidney Failure, Chronic/drug therapy , Thromboembolism/drug therapy , Randomized Controlled Trials as Topic
7.
Circ Res ; 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38686580

BACKGROUND: Abdominal aortic aneurysm (AAA) is a catastrophic disease with little effective therapy, likely due to the limited understanding of the mechanisms underlying AAA development and progression. Activating transcription factor (ATF) 3 has been increasingly recognized as a key regulator of cardiovascular diseases. However, the role of ATF3 (activating transcription factor 3) in AAA development and progression remains elusive. METHODS: Genome-wide RNA sequencing analysis was performed on the aorta isolated from saline or Ang II (angiotensin II)-induced AAA mice, and ATF3 was identified as the potential key gene for AAA development. To examine the role of ATF3 in AAA development, vascular smooth muscle cell-specific ATF3 knockdown or overexpressed mice by recombinant adenoassociated virus serotype 9 vectors carrying ATF3, or shRNA-ATF3 with SM22α (smooth muscle protein 22-α) promoter were used in Ang II (angiotensin II)-induced AAA mice. In human and murine vascular smooth muscle cells, gain or loss of function experiments were performed to investigate the role of ATF3 in vascular smooth muscle cell proliferation and apoptosis. RESULTS: In both Ang II-induced AAA mice and patients with AAA, the expression of ATF3 was reduced in aneurysm tissues but increased in aortic lesion tissues. The deficiency of ATF3 in vascular smooth muscle cell promoted AAA formation in Ang II-induced AAA mice. PDGFRB (platelet-derived growth factor receptor ß) was identified as the target of ATF3, which mediated vascular smooth muscle cell proliferation in response to TNF-alpha (tumor necrosis factor-α) at the early stage of AAA. ATF3 suppressed the mitochondria-dependent apoptosis at the advanced stage by upregulating its direct target BCL2. Our chromatin immunoprecipitation results also demonstrated that the recruitment of NFκB1 and P300/BAF/H3K27ac complex to the ATF3 promoter induces ATF3 transcription via enhancer activation. NFKB1 inhibitor (andrographolide) inhibits the expression of ATF3 by blocking the recruiters NFKB1 and ATF3-enhancer to the ATF3-promoter region, ultimately leading to AAA development. CONCLUSIONS: Our results demonstrate a previously unrecognized role of ATF3 in AAA development and progression, and ATF3 may serve as a novel therapeutic and prognostic marker for AAA.

8.
Clin Cancer Res ; 30(10): 2193-2205, 2024 May 15.
Article En | MEDLINE | ID: mdl-38592373

PURPOSE: TGFß signaling is implicated in the progression of most cancers, including esophageal adenocarcinoma (EAC). Emerging evidence indicates that TGFß signaling is a key factor in the development of resistance toward cancer therapy. EXPERIMENTAL DESIGN: In this study, we developed patient-derived organoids and patient-derived xenograft models of EAC and performed bioinformatics analysis combined with functional genetics to investigate the role of SMAD family member 3 (SMAD3) in EAC resistance to oxaliplatin. RESULTS: Chemotherapy nonresponding patients showed enrichment of SMAD3 gene expression when compared with responders. In a randomized patient-derived xenograft experiment, SMAD3 inhibition in combination with oxaliplatin effectively diminished tumor burden by impeding DNA repair. SMAD3 interacted directly with protein phosphatase 2A (PP2A), a key regulator of the DNA damage repair protein ataxia telangiectasia mutated (ATM). SMAD3 inhibition diminished ATM phosphorylation by enhancing the binding of PP2A to ATM, causing excessive levels of DNA damage. CONCLUSIONS: Our results identify SMAD3 as a promising therapeutic target for future combination strategies for the treatment of patients with EAC.


Adenocarcinoma , Ataxia Telangiectasia Mutated Proteins , DNA Repair , Esophageal Neoplasms , Oxaliplatin , Smad3 Protein , Xenograft Model Antitumor Assays , Humans , Smad3 Protein/metabolism , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Neoplasms/metabolism , DNA Repair/drug effects , Adenocarcinoma/drug therapy , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Animals , Mice , Oxaliplatin/pharmacology , Oxaliplatin/therapeutic use , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , DNA Damage/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Protein Phosphatase 2/metabolism , Protein Phosphatase 2/genetics , Signal Transduction/drug effects , Phosphorylation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Organoids/drug effects
9.
Molecules ; 29(7)2024 Apr 03.
Article En | MEDLINE | ID: mdl-38611897

Phenazine-based redox-active centers are capable of averting chemical bond rearrangements by coupling during the reaction process, leading to enhanced stabilization of the material. When introduced into a high-performance polymer with excellent physicochemical properties, they can be endowed with electrochemical properties and related prospective applications while maintaining the capabilities of the materials. In this study, a facile C-N coupling method was chosen for the synthesis of serial poly(aryl ether sulfone) materials containing phenazine-based redox-active centers and to explore their electrochemical properties. As expected, the cyclic voltammetry curves of PAS-DPPZ-60, which basically overlap after thousands of cycles, indicate the stability of the electrochemical properties. As an electrochromic material, the transmittance change in PAS-DPPZ-60 exhibits only a slight attenuation after as long as 600 cycles. Meanwhile, as an organic battery cathode material, PAS-DPPZ has a theoretical specific capacity of 126 mAh g-1, and the capacity retention rate is 82.6% after 100 cycles at a 0.1 C current density. The perfect combination of advantageous features between phenazine and poly(aryl ether sulfone) is considered to be the reason for the favorable electrochemical performance of the material series.

10.
J Cardiothorac Surg ; 19(1): 193, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38594763

In this case report, we present the unique and intriguing case of a 57-year-old man who experienced exertional palpitations and shortness of breath for 5 years. He was diagnosed with idiopathic heart failure three years ago, leading to diuretic treatment. Physical examination revealed notable left lower extremity swelling, severe varicose veins, and cardiac murmurs. Echocardiography showed significant cardiac enlargement and severe functional mitral and tricuspid valve regurgitation. Computed tomography (CT) imaging uncovered a 10 mm left common iliac arteriovenous fistula, causing abnormal early filling of the inferior vena cava (IVC) and marked IVC dilation. Open surgical repair of the arteriovenous fistula resulted in symptom relief and improved cardiac function. This case underscores the importance of considering unusual causes in heart failure patients and highlights the value of early diagnosis and intervention in complex cardiac-vascular interactions.


Arteriovenous Fistula , Arteriovenous Shunt, Surgical , Heart Failure , Tricuspid Valve Insufficiency , Humans , Male , Middle Aged , Arteriovenous Fistula/diagnostic imaging , Arteriovenous Fistula/etiology , Echocardiography , Heart Failure/surgery , Heart Failure/complications , Tricuspid Valve Insufficiency/surgery , Vena Cava, Inferior/diagnostic imaging , Vena Cava, Inferior/surgery
11.
Regen Ther ; 27: 268-278, 2024 Dec.
Article En | MEDLINE | ID: mdl-38617443

Introduction: Orthodontic tooth movement (OTM) involves complex interactions between mechanical forces and periodontal tissue adaptation, mainly mediated by periodontal ligament cells, including periodontal ligament stem cells (PDLSCs), osteoblasts, and osteoclasts. Dopamine (DA), a neurotransmitter known for its critical role in bone metabolism, is investigated in this study for its potential to enhance osteogenic differentiation in PDLSCs, which are pivotal in OTM. This study examined the potential of DA to facilitate OTM by binding to DA receptors (D1R and D2R) and activating the ERK1/2 signaling pathway. We propose that DA's interaction with these receptors on PDLSCs could enhance osteogenic differentiation, thereby accelerating bone remodeling and reducing the duration of orthodontic treatments, which offering a novel approach to improve clinical outcomes in orthodontic care. Methods: This study utilized a rat OTM model, micro-CT, histological analyses, and in vitro assays to investigate dopamine's effect on osteogenesis. PDLSCs were cultured and treated with DA, and cytotoxicity, osteogenic differentiation, gene and protein expression assessed. Results: Dopamine administration significantly increased trabecular bone density and osteogenic marker expression in an OTM rat model. In vitro, DA at 10 nM optimally promoted human PDLSCs osteogenesis without affecting proliferation. Blocking DA receptors or inhibiting the ERK1/2 pathway attenuated these effects, underscoring the importance of dopaminergic signaling in tension-induced osteogenesis during OTM. Conclusion: Taken together, our study reveals that local dopamine administration at a concentration of 10 nM not only enhances tension-induced osteogenesis in vivo but also significantly promotes osteogenic differentiation of PDLSCs in vitro through D1 and D2 receptor-mediated ERK1/2 signaling pathway activation.

12.
ISA Trans ; 2024 Apr 13.
Article En | MEDLINE | ID: mdl-38637257

This paper presents a two-loop control framework for robotic manipulator systems subject to state constraints and input saturation, which effectively integrates planning and control strategies. Namely, a stability controller is designed in the inner loop to address uncertainties and nonlinearities; an optimization-based generator is constructed in the outer loop to ensure that state and input constraints are obeyed while concurrently minimizing the convergence time. Furthermore, to dramatically the computational burden, the optimization-based generator in the outer loop is switched to a direct model-based generator when the tracking errors are sufficiently small. In this way, both a high tracking accuracy and fast dynamic response are obtained for constrained robotic manipulator systems with considerably lower computational burden. The superiority and effectiveness of the proposed structure are illustrated through comparative simulations and experiments.

13.
BMC Pediatr ; 24(1): 238, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38570780

BACKGROUND: Bronchopulmonary dysplasia (BPD) is a major complication affecting the survival rate and long-term outcomes of preterm infants. A large, prospective, multicenter cohort study was conducted to evaluate early nutritional support during the first week of life for preterm infants with a gestational age < 32 weeks and to verify nutritional risk factors related to BPD development. METHODS: A prospective multicenter cohort study of very preterm infants was conducted in 40 tertiary neonatal intensive care units across mainland China between January 1, 2020, and December 31, 2021. Preterm infants who were born at a gestational age < 32 weeks, < 72 h after birth and had a respiratory score > 4 were enrolled. Antenatal and postnatal information focusing on nutritional parameters was collected through medical systems. Statistical analyses were also performed to identify BPD risk factors. RESULTS: The primary outcomes were BPD and severity at 36 weeks postmenstrual age. A total of 1410 preterm infants were enrolled in this study. After applying the exclusion criteria, the remaining 1286 infants were included in this analysis; 614 (47.7%) infants were in the BPD group, and 672 (52.3%) were in the non-BPD group. In multivariate logistic regression model, the following six factors were identified of BPD: birth weight (OR 0.99, 95% CI 0.99-0.99; p = 0.039), day of full enteral nutrition (OR 1.03, 95% CI 1.02-1.04; p < 0.001), parenteral protein > 3.5 g/kg/d during the first week (OR 1.65, 95% CI 1.25-2.17; p < 0.001), feeding type (formula: OR 3.48, 95% CI 2.21-5.49; p < 0.001, mixed feed: OR 1.92, 95% CI 1.36-2.70; p < 0.001; breast milk as reference), hsPDA (OR 1.98, 95% CI 1.44-2.73; p < 0.001), and EUGR ats 36 weeks (OR 1.40, 95% CI 1.02-1.91; p = 0.035). CONCLUSIONS: A longer duration to achieve full enteral nutrition in very preterm infants was associated with increased BPD development. Breastfeeding was demonstrated to have a protective effect against BPD. Early and rapidly progressive enteral nutrition and breastfeeding should be promoted in very preterm infants. TRIAL REGISTRATION: The trial was registered in the Chinese Clinical Trial Registry (No. ChiCTR2000030125 on 24/02/2020) and in www.ncrcch.org (No. ISRCTN84167642 on 25/02/2020).


Bronchopulmonary Dysplasia , Infant, Premature, Diseases , Respiratory Distress Syndrome , Humans , Infant, Newborn , Bronchopulmonary Dysplasia/therapy , Cohort Studies , Enteral Nutrition , Fetal Growth Retardation , Gestational Age , Infant, Premature , Prospective Studies
14.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1255-1259, 2024 Mar.
Article Zh | MEDLINE | ID: mdl-38621972

The components with hypoglycemic activity in Plumeria rubra were isolated and purified by various column chromatography techniques and activity tracing methods. The physical and chemical properties of all the purified monomer compounds were characterized and analyzed, and a total of six compounds were isolated and identified, including 6″-acetyl-6-hydroxy-benzyl-benzoate-2-O-ß-D-glucoside(1), 6-acetyl-6-hydroxy-benzyl-benzoate-2-O-ß-D-glucoside-(1→6″)-ß-D-glucoside(2), 2-hydroxy-6-methoxy-benzyl-benzoate-2-O-ß-D-glucoside(3), 6-hydroxy-benzyl-benzoate-2-O-ß-D-glucoside(4), 6-hydroxy-benzyl-benzoate-2-O-ß-D-glucoside-(1→6″)-ß-D-glucoside(5), and 6-hydroxy-benzyl-benzoate-2-O-ß-D-glucoside-(1→6″)-ß-D-xyloside(6). Compounds 1 and 2 were new compounds, and compounds 3-6 were isolated from Plumeria for the first time. The α-glucosidase inhibitory activity of six identified compounds was tested. The results show that compounds 1-6 show certain inhibitory activity with an IC_(50) value ranging from 8.2 to 33.5 µmol·L~(-1).


Apocynaceae , Glucosides , Glucosides/chemistry , Benzoates
15.
BMJ Open ; 14(4): e077623, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38569691

INTRODUCTION: Considering the increasing incidence of Alzheimer's disease (AD) and mild cognitive impairment (MCI) worldwide, there is an urgent need to identify efficacious, safe and convenient treatments. Numerous investigations have been conducted on the use of supplements in this domain, with oral supplementation emerging as a viable therapeutic approach for AD or MCI. Nevertheless, given the multitude of available supplements, it becomes imperative to identify the optimal treatment regimen. METHODS AND ANALYSIS: Eight academic databases and three clinical trial registries will be searched from their inception to 1 June 2023. To identify randomised controlled trials investigating the effects of supplements on patients with AD or MCI, two independent reviewers (X-YZ and Y-QL) will extract relevant information from eligible articles, while the risk of bias in the included studies will be assessed using the Rob 2.0 tool developed by the Cochrane Collaboration. The primary outcome of interest is the overall cognitive function. Pair-wise meta-analysis will be conducted using RevMan V.5.3, while network meta-analysis will be carried out using Stata 17.0 and ADDIS 1.16.8. Heterogeneity test, data synthesis and subgroup analysis will be performed if necessary. The GRADE system will be employed to assess the quality of evidence. This study is scheduled to commence on 1 June 2023 and conclude on 1 October 2023. ETHICS AND DISSEMINATION: Ethics approval is not required for systematic review and network meta-analysis. The results will be submitted to a peer-reviewed journal or at a conference. TRIAL REGISTRATION NUMBER: PROSPERO (CRD42023414700).


Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/drug therapy , Network Meta-Analysis , Systematic Reviews as Topic , Cognitive Dysfunction/therapy , Cognition , Dietary Supplements , Meta-Analysis as Topic
16.
Physiol Plant ; 176(2): e14267, 2024.
Article En | MEDLINE | ID: mdl-38566236

High-temperature stress (HS) is a major abiotic stress that affects the yield and quality of plants. Cathepsin B-like protease 2 (CathB2) has been reported to play a role in developmental processes and stress response, but its involvement in HS response has not been identified. Here, overexpression, virus-induced gene silencing (VIGS)and RNA-sequencing analysis were performed to uncover the functional characteristics of SlCathB2-1 and SlCathB2-2 genes for HS response in tomato. The results showed that overexpression of SlCathB2-1 and SlCathB2-2 resulted in reduced heat tolerance of tomato to HS while silencing the genes resulted in enhanced heat tolerance. RNA-sequencing analysis revealed that the heat shock proteins (HSPs) exhibited higher expression in WT than in SlCathB2-1 and SlCathB2-2 overexpression lines. Furthermore, the possible molecular regulation mechanism underlying SlCathB2-1 and SlCathB2-2-mediated response to HS was investigated. We found that SlCathB2-1 and SlCathB2-2 negatively regulated antioxidant capacity by regulating a set of genes involved in antioxidant defence and reactive oxygen species (ROS) signal transduction. We also demonstrated that SlCathB2-1 and SlCathB2-2 positively regulated ER-stress-induced PCD (ERSID) by regulating unfolded protein response (UPR) gene expression. Furthermore, SlCathB2-1 and SlCathB2-2 interacting with proteasome subunit beta type-4 (PBA4) was identified in the ERSID pathway using yeast two-hybrid (Y2H) analysis and bimolecular fluorescence complementation (BiFC) screening. Overall, the study identified both SlCathB2-1 and SlCathB2-2 as new negative regulators to HS and presented a new HS response pathway. This provided the foundation for the construction of heat-tolerant molecular mechanisms and breeding strategies aiming to improve the thermotolerance of tomato plants.


Solanum lycopersicum , Solanum lycopersicum/genetics , Antioxidants/metabolism , Temperature , Plant Proteins/genetics , Plant Proteins/metabolism , RNA , Heat-Shock Response/genetics , Gene Expression Regulation, Plant
17.
Antioxidants (Basel) ; 13(4)2024 Apr 10.
Article En | MEDLINE | ID: mdl-38671895

Under natural conditions, abiotic stresses that limit plant growth and development tend to occur simultaneously, rather than individually. Due to global warming and climate change, the frequency and intensity of heat and salt stresses are becoming more frequent. Our aim is to determine the response mechanisms of tomato to different intensities of combined heat and salt stresses. The physiological and morphological responses and photosynthesis/reactive oxygen species (ROS)-related genes of tomato plants were compared under a control, heat stress, salt stress (50/100/200/400 mM NaCl), and a combination of salt and heat stresses. The stomatal conductance (gs) of tomato leaves significantly increased at a heat + 50 mM NaCl treatment on day 4, but significantly decreased at heat + 100/200/400 mM NaCl treatments, compared with the control on days 4 and 8. The O2·- production rate of tomato plants was significantly higher at heat + 100/200/400 mM NaCl than the control, which showed no significant difference between heat + 50 mM NaCl treatment and the control on days 4 and 8. Ascorbate peroxidase 2 was significantly upregulated by heat + 100/200/400 mM NaCl treatment as compared with heat + 50 mM NaCl treatment on days 4 and 8. This study demonstrated that the dominant effect ratio of combined heat and salt stress on tomato plants can shift from heat to salt, when the intensity of salt stress increased from 50 mM to 100 mM or above. This study provides important information for tomato tolerance improvement at combined heat and salt stresses.

18.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(5): 591-595, 2024 May 10.
Article Zh | MEDLINE | ID: mdl-38684307

OBJECTIVE: To explore the clinical characteristics and genetic etiology for a Chinese pedigree affected with Dyschromatosis symmetrica hereditaria (DSH) in conjunct with developmental delay. METHODS: A child who had presented at the First Affiliated Hospital of Zhengzhou University on May 28 2021 for abnormal skin pigmentation of the extremities and growth retardation for over 2 years was selected as the study subject. Clinical data of the child and his pedigree (11 individuals from three generations) was collected. The child was subjected to whole exome sequencing, and candidate variant was verified by Sanger sequencing. RESULTS: The child, a two-year-and-seven-month-old male, had hyper- and hypopigmentation on his hands, feet and face, in addition with delayed development. All members of his pedigree had typical presentation of DSH. A heterozygous c.2657G>A variant was found in exon 8 of the ADAR gene in the child, his mother, and elder sister. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the variant was predicted as likely pathogenic (PM1+PM2_Supporting+PP1+PP3). CONCLUSION: The c.2657G>A variant of the ADAR gene probably underlay the DSH in this pedigree.


Adenosine Deaminase , Developmental Disabilities , Pedigree , Pigmentation Disorders , RNA-Binding Proteins , Adult , Child, Preschool , Female , Humans , Male , Adenosine Deaminase/genetics , China , Developmental Disabilities/genetics , East Asian People/genetics , Exome Sequencing , Mutation , Pigmentation Disorders/genetics , Pigmentation Disorders/congenital , RNA-Binding Proteins/genetics
19.
Viruses ; 16(4)2024 Apr 15.
Article En | MEDLINE | ID: mdl-38675952

This study investigates the roles of T, B, and Natural Killer (NK) cells in the pathogenesis of severe COVID-19, utilizing mouse-adapted SARS-CoV-2-MA30 (MA30). To evaluate this MA30 mouse model, we characterized MA30-infected C57BL/6 mice (B6) and compared them with SARS-CoV-2-WA1 (an original SARS-CoV-2 strain) infected K18-human ACE2 (K18-hACE2) mice. We found that the infected B6 mice developed severe peribronchial inflammation and rapid severe pulmonary edema, but less lung interstitial inflammation than the infected K18-hACE2 mice. These pathological findings recapitulate some pathological changes seen in severe COVID-19 patients. Using this MA30-infected mouse model, we further demonstrate that T and/or B cells are essential in mounting an effective immune response against SARS-CoV-2. This was evident as Rag2-/- showed heightened vulnerability to infection and inhibited viral clearance. Conversely, the depletion of NK cells did not significantly alter the disease course in Rag2-/- mice, underscoring the minimal role of NK cells in the acute phase of MA30-induced disease. Together, our results indicate that T and/or B cells, but not NK cells, mitigate MA30-induced disease in mice and the infected mouse model can be used for dissecting the pathogenesis and immunology of severe COVID-19.


COVID-19 , DNA-Binding Proteins , Disease Models, Animal , Killer Cells, Natural , Mice, Inbred C57BL , SARS-CoV-2 , Animals , Killer Cells, Natural/immunology , COVID-19/immunology , COVID-19/virology , Mice , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , DNA-Binding Proteins/genetics , DNA-Binding Proteins/deficiency , Mice, Knockout , Humans , Lung/pathology , Lung/virology , Lung/immunology , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , B-Lymphocytes/immunology , Female , T-Lymphocytes/immunology
20.
Front Neurosci ; 18: 1337739, 2024.
Article En | MEDLINE | ID: mdl-38586196

Background: Anxiety and depression are prevalent mental disorders. As modern society continues to face mounting pressures, the incidence of anxiety and depression is on the rise. In recent years, there has been an increasing breadth of research exploring the relationship between anxiety, depression, and physical activity (PA). However, the current research progress and future development trends are unclear. The purpose of this study is to explore the research hotspots and development trends in this field, and to provide guidance for future studies and to provide some reference for clinicians. Methods: We searched the relevant literature of Web of Science Core Collection from the establishment of the database to August 15, 2023. CiteSpace, VOSviewer and Bibliometrix Packages based on the R language were used to analyze the number of publications, countries, institutions, journals, authors, references, and keywords. Results: A total of 1,591 studies were included in the analysis, and the research in the field of PA on anxiety or depression has consistently expanded. The USA (304 publications), Harvard University (93 publications), and the journal of affective disorders (97 publications) were the countries, institutions, and journals that published the highest number of articles, respectively. According to the keywords, students and pregnant women, adult neurogenesis, and Tai Chi were the groups of concern, physiological and pathological mechanisms, and the type of PA of interest, respectively. Conclusion: The study of PA on anxiety or depression is experiencing ongoing expansion. Clinicians can consider advising patients to take mind-body exercise to improve mood. In addition, future researchers can explore the mind-body exercise and its impact on anxiety or depression, PA and anxiety or depression in specific populations, and adult neurogenesis of various exercise in anxiety or depression.

...